fminbnd

算法原理

基本原理是黄金分割,三分的升级版,不一定能求出最小值的,画图之后确保函数在区间内单峰再求最小值。

这源代码500多行,理论上我是不会看了。

简化版

function [xf,fval,exitflag,output] = fminbnd(funfcn,ax,bx,options,varargin)

完整版

function [xf,fval,exitflag,output] = fminbnd(funfcn,ax,bx,options,varargin)
%FMINBND Single-variable bounded nonlinear function minimization.
%   X = FMINBND(FUN,x1,x2) attempts to find  a local minimizer X of the function 
%   FUN in the interval x1 < X < x2.  FUN is a function handle.  FUN accepts 
%   scalar input X and returns a scalar function value F evaluated at X.
%
%   X = FMINBND(FUN,x1,x2,OPTIONS) minimizes with the default optimization
%   parameters replaced by values in the structure OPTIONS, created with
%   the OPTIMSET function. See OPTIMSET for details. FMINBND uses these
%   options: Display, TolX, MaxFunEval, MaxIter, FunValCheck, PlotFcns, 
%   and OutputFcn.
%
%   X = FMINBND(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the function FUN in PROBLEM.objective, the interval
%   in PROBLEM.x1 and PROBLEM.x2, the options structure in PROBLEM.options,
%   and solver name 'fminbnd' in PROBLEM.solver. The structure PROBLEM must 
%   have all the fields.
%
%   [X,FVAL] = FMINBND(...) also returns the value of the objective function,
%   FVAL, computed in FUN, at X.
%
%   [X,FVAL,EXITFLAG] = FMINBND(...) also returns an EXITFLAG that describes 
%   the exit condition of FMINBND. Possible values of EXITFLAG and the 
%   corresponding exit conditions are
%
%    1  FMINBND converged with a solution X based on OPTIONS.TolX.
%    0  Maximum number of function evaluations or iterations reached.
%   -1  Algorithm terminated by the output function.
%   -2  Bounds are inconsistent (that is, ax > bx).
%
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINBND(...) also returns a structure
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the
%   number of function evaluations in OUTPUT.funcCount, the algorithm name 
%   in OUTPUT.algorithm, and the exit message in OUTPUT.message.
%
%   Examples
%     FUN can be specified using @:
%        X = fminbnd(@cos,3,4)
%      computes pi to a few decimal places and gives a message upon termination.
%        [X,FVAL,EXITFLAG] = fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))
%      computes pi to about 12 decimal places, suppresses output, returns the
%      function value at x, and returns an EXITFLAG of 1.
%
%     FUN can be an anonymous function:
%        X = fminbnd(@(x) sin(x)+3,2,5)
%
%     FUN can be a parameterized function.  Use an anonymous function to
%     capture the problem-dependent parameters:
%        f = @(x,c) (x-c).^2;  % The parameterized function.
%        c = 1.5;              % The parameter.
%        X = fminbnd(@(x) f(x,c),0,1)
%
%   See also OPTIMSET, FMINSEARCH, FZERO, FUNCTION_HANDLE.

%   References:
%   "Algorithms for Minimization Without Derivatives",
%   R. P. Brent, Prentice-Hall, 1973, Dover, 2002.
%
%   "Computer Methods for Mathematical Computations",
%   Forsythe, Malcolm, and Moler, Prentice-Hall, 1976.

%   Original coding by Duane Hanselman, University of Maine.
%   Copyright 1984-2010 The MathWorks, Inc.
%   $Revision: 1.18.4.13 $  $Date: 2010/05/13 17:38:59 $


defaultopt = struct('Display','notify',...
    'MaxFunEvals',500,'MaxIter',500,'TolX',1e-4,'FunValCheck','off','OutputFcn',[],'PlotFcns',[]);

% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && isequal(funfcn,'defaults')
    xf = defaultopt;
    return
end

% initialization
if nargin<4,
    options = [];
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(funfcn,'struct')
        problemInput = true;
        [funfcn,ax,bx,options] = separateOptimStruct(funfcn);
    else % Single input and non-structure.
        error('MATLAB:fminbnd:InputArg','The input to FMINBND should be either a structure with valid fields or consist of at least three arguments.');
    end
end

if nargin < 3 && ~problemInput
    error('MATLAB:fminbnd:NotEnoughInputs',...
        'FMINBND requires three input arguments.')
end

% Check for non-double inputs
if ~isa(ax,'double') || ~isa(bx,'double')
  error('MATLAB:fminbnd:NonDoubleInput', ...
        'FMINBND only accepts inputs of data type double.')
end

printtype = optimget(options,'Display',defaultopt,'fast');
tol = optimget(options,'TolX',defaultopt,'fast');
maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
maxiter = optimget(options,'MaxIter',defaultopt,'fast');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
funccount = 0;
iter = 0;
xf = []; fx = [];

switch printtype
    case {'notify','notify-detailed'}
        print = 1;
    case {'none','off'}
        print = 0;
    case {'iter','iter-detailed'}
        print = 3;
    case {'final','final-detailed'}
        print = 2;
    otherwise
        print = 1;
end
% Handle the output
outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
if isempty(outputfcn)
    haveoutputfcn = false;
else
    haveoutputfcn = true;
    % Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
    outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
end
% Handle the plot
plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
if isempty(plotfcns)
    haveplotfcn = false;
else
    haveplotfcn = true;
    % Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
    plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
end

% checkbounds
if ax > bx
    exitflag = -2;
    xf=[]; fval = [];
    msg=sprintf(['Exiting due to infeasibility: the lower bound exceeds the' ...
        ' upper bound.']);
    if print > 0
        disp(' ')
        disp(msg)
    end
    output.iterations = 0;
    output.funcCount = 0;
    output.algorithm = 'golden section search, parabolic interpolation';
    output.message = msg;
    % Have not initialized OutputFcn; do not need to call it before returning
    return
end

% Assume we'll converge
exitflag = 1;

header = ' Func-count     x          f(x)         Procedure';
procedure='       initial';

% Convert to function handle as needed.
funfcn = fcnchk(funfcn,length(varargin));

if funValCheck
    % Add a wrapper function, CHECKFUN, to check for NaN/complex values without
    % having to change the calls that look like this:
    % f = funfcn(x,varargin{:});
    % x is the first argument to CHECKFUN, then the user's function,
    % then the elements of varargin. To accomplish this we need to add the 
    % user's function to the beginning of varargin, and change funfcn to be
    % CHECKFUN.
    varargin = {funfcn, varargin{:}};
    funfcn = @checkfun;
end

% Initialize the output and plot functions.
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'init',funccount,iter, ...
        fx,procedure,varargin{:});
    if stop
        [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  print > 0
            disp(output.message)
        end
        return;
    end
end

% Compute the start point
seps = sqrt(eps);
c = 0.5*(3.0 - sqrt(5.0));
a = ax; b = bx;
v = a + c*(b-a);
w = v; xf = v;
d = 0.0; e = 0.0;
x= xf; fx = funfcn(x,varargin{:});
funccount = funccount + 1;
if print > 2
    disp(' ')
    disp(header)
    disp(sprintf('%5.0f   %12.6g %12.6g %s',funccount,xf,fx,procedure))
end

% OutputFcn and PlotFcns call
xOutputfcn = xf; % Last x passed to outputfcn/plotfcns; has the input x's shape
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'iter',funccount,iter, ...
        fx,procedure,varargin{:});
    if stop  % Stop per user request.
        [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  print > 0
            disp(output.message)
        end
        return;
    end
end

fv = fx; fw = fx;
xm = 0.5*(a+b);
tol1 = seps*abs(xf) + tol/3.0;
tol2 = 2.0*tol1;

% Main loop
while ( abs(xf-xm) > (tol2 - 0.5*(b-a)) )
    gs = 1;
    % Is a parabolic fit possible
    if abs(e) > tol1
        % Yes, so fit parabola
        gs = 0;
        r = (xf-w)*(fx-fv);
        q = (xf-v)*(fx-fw);
        p = (xf-v)*q-(xf-w)*r;
        q = 2.0*(q-r);
        if q > 0.0,  p = -p; end
        q = abs(q);
        r = e;  e = d;

        % Is the parabola acceptable
        if ( (abs(p)q*(a-xf)) && (p= xm, e = a-xf;    else e = b-xf;  end
        d = c*e;
        procedure = '       golden';
    end

    % The function must not be evaluated too close to xf
    si = sign(d) + (d == 0);
    x = xf + si * max( abs(d), tol1 );
    fu = funfcn(x,varargin{:});
    funccount = funccount + 1;

    iter = iter + 1;
    if print > 2
        disp(sprintf('%5.0f   %12.6g %12.6g %s',funccount, x, fu, procedure));
    end
    % OutputFcn and PlotFcns call
    if haveoutputfcn || haveplotfcn
        [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,'iter',funccount,iter, ...
            fu,procedure,varargin{:});
        if stop  % Stop per user request.
            [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
            if  print > 0
                disp(output.message);
            end
            return;
        end
    end

    % Update a, b, v, w, x, xm, tol1, tol2
    if fu <= fx
        if x >= xf, a = xf; else b = xf; end
        v = w; fv = fw;
        w = xf; fw = fx;
        xf = x; fx = fu;
    else % fu > fx
        if x < xf, a = x; else b = x; end
        if ( (fu <= fw) || (w == xf) )
            v = w; fv = fw;
            w = x; fw = fu;
        elseif ( (fu <= fv) || (v == xf) || (v == w) )
            v = x; fv = fu;
        end
    end
    xm = 0.5*(a+b);
    tol1 = seps*abs(xf) + tol/3.0; tol2 = 2.0*tol1;

    if funccount >= maxfun || iter >= maxiter
        exitflag = 0;
        output.iterations = iter;
        output.funcCount = funccount;
        output.algorithm = 'golden section search, parabolic interpolation';
        fval = fx;
        msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
        output.message = msg;
        % OutputFcn and PlotFcns call
        if haveoutputfcn || haveplotfcn
            callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
        end
        return
    end
end % while

fval = fx;
output.iterations = iter;
output.funcCount = funccount;
output.algorithm = 'golden section search, parabolic interpolation';
msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
output.message = msg;
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
    callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function msg = terminate(x,exitflag,finalf,funccount,maxfun,iter,maxiter,tol,print)

switch exitflag
    case 1
        msg = ...
            sprintf(['Optimization terminated:\n' ...
            ' the current x satisfies the termination criteria using OPTIONS.TolX of %e \n'], tol);
        if print > 1 % only print msg if not 'off' or 'notify'
            disp(' ')
            disp(msg)
        end
    case 0
        if funccount >= maxfun
            msg = sprintf(['Exiting: Maximum number of function evaluations has been exceeded\n' ...
                '         - increase MaxFunEvals option.\n' ...
                '         Current function value: %f \n'], finalf);
            if print > 0
                disp(' ')
                disp(msg)
            end
        else
            msg = sprintf(['Exiting: Maximum number of iterations has been exceeded\n' ...
                '         - increase MaxIter option.\n' ...
                '         Current function value: %f \n'], finalf);
            if print > 0
                disp(' ')
                disp(msg)
            end
        end
    otherwise
        error('MATLAB:fminbnd:InvalidExitflag','Invalid exitflag value in TERMINATE.')
end

%--------------------------------------------------------------------------
function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,state,funccount,iter,  ...
    f,procedure,varargin)
% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the
% outputfcn/plotfcns.
%
% state - can have the values 'init','iter', or 'done'.

% For the 'done' state we do not check the value of 'stop' because the
% optimization is already done.
optimValues.funccount = funccount;
optimValues.iteration = iter;
optimValues.fval = f;
optimValues.procedure = procedure;

xOutputfcn = x;  % Set xOutputfcn to be x
stop = false;
% Call output functions
if ~isempty(outputfcn)
    switch state
        case {'iter','init'}
            stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:});
        otherwise
            error('MATLAB:fminbnd:InvalidState','Unknown state in CALLOUTPUTANDPLOTFCNS.')
    end
end
% Call plot functions
if ~isempty(plotfcns)
    switch state
        case {'iter','init'}
            stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:});
        otherwise
            error('MATLAB:fminbnd:InvalidState','Unknown state in CALLOUTPUTANDPLOTFCNS.')
    end
end

%--------------------------------------------------------------------------
function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization
% is interrupted.

x = xOutputfcn;
FVAL = optimValues.fval;
EXITFLAG = -1;
OUTPUT.iterations = optimValues.iteration;
OUTPUT.funcCount = optimValues.funccount;
OUTPUT.algorithm = 'golden section search, parabolic interpolation';
OUTPUT.message = 'Optimization terminated prematurely by user.';

%--------------------------------------------------------------------------
function f = checkfun(x,userfcn,varargin)
% CHECKFUN checks for complex or NaN results from userfcn.

f = userfcn(x,varargin{:});
% Note: we do not check for Inf as FMINBND handles it naturally.
if isnan(f)
    error('MATLAB:fminbnd:checkfun:NaNFval', ...
        'User function ''%s'' returned NaN when evaluated at %g;\n FMINBND cannot continue.', ...
        localChar(userfcn), x);
elseif ~isreal(f)
    error('MATLAB:fminbnd:checkfun:ComplexFval', ...
        'User function ''%s'' returned a complex value when evaluated at %g;\n FMINBND cannot continue.', ...
        localChar(userfcn),x);
end


%--------------------------------------------------------------------------
function strfcn = localChar(fcn)
% Convert the fcn to a string for printing

if ischar(fcn)
    strfcn = fcn;
elseif isa(fcn,'inline')
    strfcn = char(fcn);
elseif isa(fcn,'function_handle')
    strfcn = func2str(fcn);
else
    try
        strfcn = char(fcn);
    catch
        strfcn = '(name not printable)';
    end
end