polyfit

算法原理

超定方程组的最小二乘解。

可以参考拉格朗日插值

简化版

function p = polyfit(x,y,n)

% 将x向量和y向量转化为列向量
x = x(:);
y = y(:);

% 构建 Vandermonde 矩阵.
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1
   V(:,j) = x.*V(:,j+1);
end

% 解决最小二乘拟合问题
% 将V(m-by-n)分解成V=Q*R,其中Q(m-by-m)是酉矩阵,R(m-by-n)是上三角矩阵
% 如果m>n,则取Q的前n列,R的前m行
[Q,R] = qr(V,0);

p = R\(Q'*y);
p = p';

完整版

function [p,S,mu] = polyfit(x,y,n)
%POLYFIT Fit polynomial to data.
%   P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of
%   degree N that fits the data Y best in a least-squares sense. P is a
%   row vector of length N+1 containing the polynomial coefficients in
%   descending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).
%
%   [P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and a
%   structure S for use with POLYVAL to obtain error estimates for
%   predictions.  S contains fields for the triangular factor (R) from a QR
%   decomposition of the Vandermonde matrix of X, the degrees of freedom
%   (df), and the norm of the residuals (normr).  If the data Y are random,
%   an estimate of the covariance matrix of P is (Rinv*Rinv')*normr^2/df,
%   where Rinv is the inverse of R.
%
%   [P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial in
%   XHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). This
%   centering and scaling transformation improves the numerical properties
%   of both the polynomial and the fitting algorithm.
%
%   Warning messages result if N is >= length(X), if X has repeated, or
%   nearly repeated, points, or if X might need centering and scaling.
%
%   Class support for inputs X,Y:
%      float: double, single
%
%   See also POLY, POLYVAL, ROOTS, LSCOV.

%   Copyright 1984-2009 The MathWorks, Inc.
%   $Revision: 5.17.4.11 $  $Date: 2009/09/03 05:25:22 $

% The regression problem is formulated in matrix format as:
%
%    y = V*p    or
%
%          3  2
%    y = [x  x  x  1] [p3
%                      p2
%                      p1
%                      p0]
%
% where the vector p contains the coefficients to be found.  For a
% 7th order polynomial, matrix V would be:
%
% V = [x.^7 x.^6 x.^5 x.^4 x.^3 x.^2 x ones(size(x))];

% 检查输入x向量和y向量长度是否相等
if ~isequal(size(x),size(y))
    error('MATLAB:polyfit:XYSizeMismatch',...
          'X and Y vectors must be the same size.')
end

% 将x向量和y向量转化为列向量
x = x(:);
y = y(:);

% 如果输出参数数目大于2,对x进行数据标准化(Standard score)
if nargout > 2
   mu = [mean(x); std(x)];
   x = (x - mu(1))/mu(2);
end

% 构建 Vandermonde 矩阵.
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1
   V(:,j) = x.*V(:,j+1);
end

% 解决最小二乘拟合问题
% 将V(m-by-n)分解成V=Q*R,其中Q(m-by-m)是酉矩阵,R(m-by-n)是上三角矩阵
% 如果m>n,则取Q的前n列,R的前m行
[Q,R] = qr(V,0);
% 关闭所有警告
ws = warning('off','all'); 
p = R\(Q'*y);    % Same as p = V\y;


% 下面一大堆都不是重点
warning(ws);
if size(R,2) > size(R,1)
   warning('MATLAB:polyfit:PolyNotUnique', ...
       'Polynomial is not unique; degree >= number of data points.')
elseif warnIfLargeConditionNumber(R)
    if nargout > 2
        warning('MATLAB:polyfit:RepeatedPoints', ...
                ['Polynomial is badly conditioned. Add points with distinct X\n' ...
                 '         values or reduce the degree of the polynomial.']);
    else
        warning('MATLAB:polyfit:RepeatedPointsOrRescale', ...
                ['Polynomial is badly conditioned. Add points with distinct X\n' ...
                 '         values, reduce the degree of the polynomial, or try centering\n' ...
                 '         and scaling as described in HELP POLYFIT.']);
    end
end

if nargout > 1
    r = y - V*p;
    % S is a structure containing three elements: the triangular factor from a
    % QR decomposition of the Vandermonde matrix, the degrees of freedom and
    % the norm of the residuals.
    S.R = R;
    S.df = max(0,length(y) - (n+1));
    S.normr = norm(r);
end

p = p.';          % Polynomial coefficients are row vectors by convention.

function flag = warnIfLargeConditionNumber(R)
if isa(R, 'double')
    flag = (condest(R) > 1e+10);
else
    flag = (condest(R) > 1e+05);
end